
Efficient Multiagent Planning via Shared Action Suggestions
Dylan M. Asmar

Stanford Intelligent Systems Laboratory

Stanford, CA, USA

asmar@stanford.edu

Mykel J. Kochenderfer

Stanford Intelligent Systems Laboratory

Stanford, CA, USA

mykel@stanford.edu

ABSTRACT
Decentralized partially observable Markov decision processes with

communication (Dec-POMDP-Com) provide a framework for mul-

tiagent decision making under uncertainty, but the NEXP-complete

complexity renders solutions intractable in general. While sharing

actions and observations can reduce the complexity to PSPACE-

complete, we propose an approach that bridges POMDPs and Dec-

POMDPs by communicating only suggested joint actions, eliminat-

ing the need to share observations while maintaining performance

comparable to fully centralized planning and execution. Our algo-

rithm estimates joint beliefs using shared actions to prune infeasible

beliefs. Each agent maintains possible belief sets for other agents,

pruning them based on suggested actions to form an estimated joint

belief usable with any centralized policy. This approach requires

solving a POMDP for each agent, reducing computational complex-

ity while preserving performance. We demonstrate its effectiveness

on several Dec-POMDP benchmarks showing performance compa-

rable to centralized methods when shared actions enable effective

belief pruning. This action-based communication framework offers

a natural avenue for integrating human-agent cooperation, opening

new directions for scalable multiagent planning under uncertainty,

with applications in both autonomous systems and human-agent

teams.

Repository: https://github.com/dylan-asmar/estimated_joint_belief

KEYWORDS
Dec-POMDP, Dec-POMDP-Com, Multiagent Planning, Sequential

Decision Making

1 INTRODUCTION
From scientific research and complex engineering projects to emer-

gency response teams and military operations, effective coordina-

tion between individuals is vital for success. The ability of humans

to work together, communicate intuitively, and adapt to chang-

ing conditions has inspired researchers to explore cooperation in

autonomous systems [1]. However, achieving the same seamless

collaboration in autonomous teams remains a significant challenge.

In the context of multiagent decision making under uncertainty,

where agents must act without complete knowledge of the state

of their environment and outcomes of actions are stochastic, one

widely used model is the decentralized partially observable Markov

decision process (Dec-POMDP) [10]. Agents must reason not only

about their environment but also about the possible actions and be-

liefs of other agents without directly communicating. Dec-POMDPs

are powerful, but notoriously hard to solve—making them imprac-

tical for many real-world problems [33].

When agents are allowed to communicate, the computational

burden can be reduced under certain assumptions [20, 36]. However,

sharing the required information can become impractical in terms

of complexity and the cost of communication. In addition, when

the communication is not lossless and free, the complexity of a

Dec-POMDP with communication (Dec-POMDP-Com) remains

NEXP-complete [21].

The challenges in multiagent coordination become even more

pronounced when we consider the growing field of human-agent

teaming. As autonomous systems become more capable, the idea

of humans and machines working together to solve problems be-

comes increasingly relevant [14, 26]. The hope is that combining

human intuition and adaptability with the computational power

and efficiency of machines will create teams that outperform either

humans or machines working alone. However, realizing this po-

tential requires addressing not only the complexities of multiagent

collaboration but also the unique challenges of human-machine

communication and shared understanding [13, 22].

Humans and autonomous agents often operate using different

models of the world and decision-making processes, and finding a

way for them to communicate effectively is crucial for collaboration

[40]. In many cases, humans communicate by simply suggesting

actions—“let’s move there” or “take that route”—without needing

to share all the details of their observations or beliefs. For instance,

when a friend suggests, “We should eat at restaurant X,” they are

not just proposing an action, but implicitly communicating several

beliefs: that the restaurant is open, that it fits the group’s dietary

needs and preferences, that it is within an acceptable price range,

and possibly that it is not too crowded at the moment. The sugges-

tion encapsulates a complex set of observations and reasoning in a

simple action proposal.

This type of action-based communication is natural for humans

but has not been fully explored as a method for enabling collabora-

tion in autonomous systems or human-agent teams. In this paper,

we propose an approach that narrows the focus of communication

to suggested joint actions. Instead of sharing raw observations or be-

liefs, agents communicate their recommended actions at each step.

This approach mirrors how humans often collaborate in complex

tasks—by using action suggestions to convey important informa-

tion.

Our proposed method estimates joint beliefs by maintaining sets

of reachable beliefs and inferring the beliefs of the other agents.

The key insight is that an action suggestion implies the agent’s

belief is within a particular subspace of the belief space. We can

use that information to prune infeasible beliefs from the belief set.

The agent can then more accurately infer the other agents’ beliefs,

enabling the construction of an estimated joint belief that can be

used with a policy assuming centralized execution. This method

requires solving 𝑛 multiagent POMDPs (MPOMDPs) for an 𝑛 agent

problem, online computation of belief updates for all of the beliefs

in the belief set, and a joint policy using the centralized assumptions

(solving another MPOMDP). We evaluate this approach on several

https://github.com/dylan-asmar/estimated_joint_belief

standard Dec-POMDP benchmarks and more complex variations

of the standard problems. The results demonstrate our approach

performs similarly to a fully centralized method when the shared

action information provides effective belief pruning.

2 RELATEDWORK
This work builds upon key areas in decentralized decision making,

including communication in Dec-POMDPs, sufficient statistics for

planning, and action-based coordination methods.

Communication in Dec-POMDPs. The introduction of commu-

nication to Dec-POMDPs has been explored as a way to reduce

the computational burden and improve coordination among agents.

Pynadath and Tambe [36] examined how communication strategies

could improve multi-agent teamwork, focusing on balancing the

benefits of shared information with the practical constraints of

decentralized environments. Goldman and Zilberstein [20] further

investigated the optimization of information exchange in thesemod-

els, showing how selective communication can enhance decision-

making.

Sufficient Statistics. The concept of sufficient statistics has played

an important role in simplifying the planning process for Dec-

POMDPs. Oliehoek [32] introduced the idea of a probability distri-

bution over joint action-observation histories as a sufficient plan-

time statistic for the past joint policy. Dibangoye et al. [15] recast

Dec-POMDPs as a continuous state MDP using occupancy states,

allowing the application of POMDP techniques. While we do not

directly adopt the occupancy MDP framework, our method shares

the goal of compactly representing the system’s information state

for more efficient planning and execution.

One-Sided Information Sharing. One-sided information sharing

has been studied as a method for reducing the complexity of Dec-

POMDPs by allowing one agent to have access to both its own and

the other agent’s observations. Xie et al. [42] demonstrated that in

settings with one-sided information sharing, where one agent has

full access to both its own and the other agent’s observations, the

informed agent can act as a central planner, coordinating decisions

optimally.

Action-Based Coordination. This work is also related to research

on action-based coordination inmulti-agent systems. Previous work

has explored the use of suggested actions as a means of communica-

tion between agents, treating these suggestions as observations of

the environment [8]. However, that work assumed that suggested

actions were conditioned on the true state of the environment,

which becomes less reliable when agents make suggestions based

on their beliefs about the state rather than the state itself.

A related example of action-based coordination can be found

in aircraft collision avoidance systems like TCAS and ACAS X

[7]. These systems use action advisories to restrict the actions of

other aircraft, effectively coordinating decisions without direct

observation or state sharing. The systems issues advisories like

“do not descend,” which restrict the set of available actions for

other aircraft. ACAS X performs this by adding online costs to the

incompatible actions to help ensure cooperative behavior [6].

The Proposed Approach in Context. This work builds on the idea

that communication can help reduce computational complexity by

using communication of suggested joint actions. These suggested

actions are used to construct a distribution over the beliefs of the

other agents, providing distribution over sufficient statistics for

the histories. Unlike previous work using action suggestions, this

method allows both agents to interact with the environment where

they all have partial observability. It leverages the ideas of one-

sided information sharing where an agent can select optimal joint

actions if it knows the histories of the other agents, but relaxes the

assumption of full observation access. By relying on joint action

suggestions, this approach reduces the need for full communication

while maintaining coordination efficiency and it also provides a

natural framework for extending this approach to human-agent

teaming where action suggestions are an intuitive mode of commu-

nication.

3 BACKGROUND
A partially observable Markov decision process (POMDP) is a math-

ematical framework to model sequential decision making prob-

lems under uncertainty [38]. A POMDP is represented as a tuple

(S,A,O,𝑇 ,𝑂, 𝑅,𝛾), where S is a set of states, A is a set of ac-

tions, and O is a set of observations. At each time step, an agent

in state 𝑠 ∈ S chooses an action 𝑎 ∈ A, transitions to 𝑠′ based on

𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃 (𝑠′ | 𝑠, 𝑎), and receives an observation 𝑜 ∈ O based

on 𝑂 (𝑠′, 𝑎, 𝑜) = 𝑃 (𝑜 | 𝑠′, 𝑎).
The agent receives a reward 𝑅(𝑠, 𝑎) ∈ R, with discount factor

𝛾 ∈ [0, 1) for infinite horizons. The goal is to maximize the total

expected reward E
[∑∞

𝑡=0 𝛾
𝑡𝑅 (𝑠𝑡 , 𝑎𝑡)

]
, where 𝑠𝑡 and 𝑎𝑡 are the state

and action at time 𝑡 . One method to solve a POMDP is to infer a

belief distribution 𝑏 ∈ B over S and then solve for a policy 𝜋 that

maps the belief to an action where B is the set of beliefs over S [27].

Executing with this type of policy requires maintaining 𝑏 through

updates after each time step.

A Decentralized POMDP (Dec-POMDP) extends the POMDP

framework to multiple cooperative agents. It can be represented as

a tuple (I,S, {A𝑖 }, {O𝑖 },𝑇 ,𝑂, 𝑅,𝛾), where I is the set of agents,

and each agent 𝑖 ∈ I selects a local action 𝑎𝑖 ∈ A𝑖
and receives

a local observations 𝑜𝑖 ∈ O𝑖 . In this paper, we use superscripts

to represent the agent index and bold variables to represent the

joint collection across all agents, e.g., a = (𝑎1, . . . , 𝑎 | I |). The true
state of the system 𝑠 ∈ S is shared by all agents, while the reward,

transition, and observation functions are defined over joint actions

and observations (i.e., 𝑅(𝑠, a), 𝑇 (𝑠, a, 𝑠′), and 𝑂 (𝑠′, a, o)) [27, 33].
In many scenarios, agents often have the ability to communicate.

A Dec-POMDP with communication (Dec-POMDP-Com) further

extends the Dec-POMDP framework by allowing communication

between agents. The Dec-POMDP tuple remains the same with

the addition of {Σ𝑖 } and 𝐶Σ where Σ𝑖 is the alphabet of possible
messages that agent 𝑖 can send and 𝐶Σ is the communication cost

function [33, 36].

In both a Dec-POMDP and a Dec-POMDP-Com, agents must

make decisions based on their individual action-observation his-

tories (and messages received in a Dec-POMDP-Com), as they do

not have access to the full state or the observations of other agents.

The goal is to find a joint policy 𝝅 = (𝜋𝑖 , . . . , 𝜋 | I |) that maximizes

the expected discounted sum of the shared rewards. Solving a finite

horizon Dec-POMDP or a Dec-POMDP-Com is NEXP-complete

[10, 33]. If the agents can communicate their actions and observa-

tions perfectly and without cost, then the agent’s can maintain a

collective belief state and this model is called a multiagent POMDP

(MPOMDP). MPOMDPs can be solved using the same approaches

used to solve POMDPs [33, 36].

In our approach, we use MPOMDP policies instead of solving

the Dec-POMDP directly. Policies for POMDPs and MPOMDPs can

be generated offline or computed online during execution. In this

work, we integrate our method with policies generated offline and

leave the application to online solvers for future work. In particular,

we use SARSOP [28] to generate the policies and represent the

policy as a set of alpha vectors, but our approach is not limited to

SARSOP or alpha vectors and can be applied to policies generated

by other methods.

4 PROBLEM FORMULATION AND NOTATION
The problemwe are focusing on is a collaborative sequential decision-

making problem under uncertainty and fits within the Dec-POMDP-

Com framework. We perform our experiments assuming infinite

horizon problems, but the methods could apply to finite horizon

problems as well. In this work, we assume discrete state, action,

and observation spaces.

The alphabet of messages for each agent is equal to the action

space for that agent Σ𝑖 = A𝑖
and the messages are sent without

cost. We further assume that each agent sends its message after

receiving its local observation and before performing an action. We

do not model any message noise or loss and assume all messages

are received. We denote the message from agent 𝑖 to agent 𝑗 at time

𝑡 as 𝝈𝑖, 𝑗
𝑡 ∈ Σ𝑖 .

As mentioned in section 3, a single superscript is the agent index

and bold variables are the joint collection across all agents, e.g.,

a = (𝑎1, . . . , 𝑎 | I |). Each agent maintains a belief over the state

space, updated based on local observations. The belief of agent 𝑖 at

time 𝑡 will be designated as 𝑏𝑖𝑡 ∈ B𝑖 where B𝑖 is the belief space of
agent 𝑖 . We use a tilde instead of a bold symbol to indicate a joint

belief
˜𝑏 since the joint belief is not a collection.

We also assume that each agent has access to a surrogate policy

for other agents. The surrogate policy 𝜋𝑖, 𝑗 is the policy agent 𝑖

assumes agent 𝑗 is operating with. In environments like our experi-

ments where we conduct centralized planning offline, the surrogate

policy equals the true policy 𝜋𝑖, 𝑗 = 𝜋 𝑗
.

In this problem setting, agents will be maintaining estimates with

respect to the other agents (e.g. estimates of other agents’ beliefs).

Any estimation will be marked with a hat symbol. A superscript

of two indices 𝑖, 𝑗 on an estimation refers to the item belonging to

agent 𝑖 , about agent 𝑗 . For example,
ˆ𝑏
𝑖, 𝑗
𝑡𝑘

represents the 𝑘th estimated

belief agent 𝑖 has for agent 𝑗 at time 𝑡 , and the set of estimated beliefs

agent 𝑖 has for agent 𝑗 will be designated as
ˆB𝑖, 𝑗 .

In a slight abuse of notation, we use subscripts to indicate the

time step (𝑏𝑡), counting of the number of variables of a collec-

tion (subscript to the time step, 𝑏𝑡𝑘), and for indexing actions and

observations (𝑎ℓ , 𝑜𝑚). When a subscript is used on an action or

observation, we are referencing the index of that action within the

action space, e.g. 𝑎𝑖
ℓ
∈ A𝑖

is the ℓ th action in A𝑖
.

5 USING ACTION SUGGESTIONS
There are several ways agents can use suggested actions. The sim-

plest option is to ignore the messages and choose actions as if there

was no communication, which is equivalent to a Dec-POMDP. Al-

ternatively, agents could designate a leader at each time step and

follow the leader’s suggested actions, which is sufficient in some

environmentswhere one agent’s observations provide enough infor-

mation, as in the Broadcast Channel problem (section 6.3). Another

approach is hierarchical action selection, where agents select ac-

tions and communicate following a specific communication order.

In this scheme, each agent can select an action with knowledge

of the previous messages received for that time step. The order of

communication becomes important as agents earlier in the process

have to make decisions with less information. This approach is

similar to other prioritization schemes [17].

In our approach, we use suggested actions to infer beliefs. In a

cooperative scenario, we assume agents act optimally to maximize

shared rewards. Therefore, we assume the suggested action is the

one that maximizes the expected sum of discounted rewards based

on the agent’s belief of the environment. Referencing back to the

restaurant example from the introduction, we can infer aspects of

the friend’s belief from their action suggestion by assuming they

are acting optimally and want to maximize the happiness of the

group. For instance, if a friend suggests a restaurant, we can infer

they believe it is open and suitable for the group’s preferences.

Each action suggestion thus contains information related to the

suggester’s belief of the environment, which we can use to infer

their belief.

5.1 Inferring the Belief Subspace
We can use the suggested action and the fact that the suggested

action is the optimal action from the suggester’s perspective to

infer the possible beliefs the agent could have. For example, if agent

𝑖 receives a suggested action a𝑠 from agent 𝑗 using policy 𝜋 𝑗
, then

we know 𝑏 𝑗 ∈ B 𝑗
a𝑠 where B

𝑗
a𝑠 = {𝑏 | 𝜋 𝑗 (𝑏) = a𝑠 ,∀𝑏 ∈ B 𝑗 }.

In an alpha vector policy, this would be the subspace of beliefs

that are dominated by vectors associated with the suggested action.

With a set of alpha vectors Γ representing the policy and a suggested
action a𝑠

B 𝑗
a𝑠 = {b | (𝜶 𝑖 − 𝜶 𝑗) · b ≥ 0, ∀𝜶 𝑖 ∈ Γa𝑠 ,∀𝜶 𝑗 ∈ Γ} (1)

where Γa𝑠 ⊆ Γ is the set of alpha vectors corresponding to action

a𝑠 .
Figure 1 provides a graphical example of this subspace where we

have a simple environment with two states and the 𝑥 axis represents

the probability of being in the first state. The notional alpha vector

policy consists of six alpha vectors and the region indicated as

B 𝑗
a1 is the subspace dominated by a1 alpha vectors. Therefore, we

know that if agent 𝑗 is acting optimally using this policy, then

𝑏 𝑗 (𝑠 = 1) ∈ [0, 1] ∪ [0.7, 0.8].

5.2 Inferring the Belief
5.2.1 Pruning Beliefs. At each time step, agents update their beliefs

based on individual observations and actions performed. From agent

𝑖’s perspective, there are |O 𝑗 |∏𝑖≠𝑗 |A𝑘 | possible beliefs reachable
from

ˆ𝑏
𝑖, 𝑗
𝑡 for agent 𝑗 . The size of this set grows exponentially in time,

0 0.2 0.4 0.6 0.8 1

3.2

3.3

3.4

3.5

3.6

B 𝑗
a1 B 𝑗

a1

𝑃 (𝑠 = 1)

𝑈
𝜋
𝑗

a1 a2 a3 a4

Figure 1: Example of the dominated belief subspace in an
alpha vector policy for action a1.

reaching

(
|O 𝑗 |∏𝑖≠𝑗 |A𝑘 |

)ℓ
after ℓ time steps. This exponential

growth is one of the primary factors in the NEXP complexity of

solving Dec-POMDPs.

To helpmanage this growth, we can prune infeasible beliefs using

the suggested actions. We can rigorously define the belief subspace

in which the suggester’s belief must lie (eq. (1)) and this subspace

is an infinite set of beliefs. While we cannot easily construct the

subspace, we can test if a belief is within this subspace by evaluating

the policy at that belief.

Without loss of generality, we will discuss this process from the

perspective of agent 𝑖 maintaining a belief estimate for agent 𝑗 . We

start with an initial belief set
ˆB𝑖, 𝑗
0

= 𝑏
𝑗

0
, where in our approach,

we assume all agents begin with the same initial belief. After per-

forming an action and receiving a local observation, we expand the

beliefs considering all possible actions and observations, resulting

in | ˆB𝑖, 𝑗𝑡 | = | ˆB
𝑖, 𝑗

𝑡−1 | |O
𝑗 |∏𝑗≠𝑖 |A 𝑗 | at time 𝑡 . We then evaluate each

belief with the surrogate policy for agent 𝑗 and prune the beliefs

where the optimal action does not match the received message

ˆB𝑖, 𝑗𝑡 ← {𝑏 ∈ ˆB𝑖, 𝑗𝑡 | 𝜋
𝑖, 𝑗 (𝑏) = 𝝈 𝑗,𝑖 }. (2)

If we know the actions performed at the last time step, we only need

to consider observations for a single joint action, increasing our

estimated belief set by a factor of |O 𝑗 |. This knowledge significantly
reduces the size of the reachable belief set.

Figure 2 illustrates this pruning process. In this example with

three agents (𝑛 = 3), each agent has two possible actions (|A𝑖 | = 2)

and can receive one of three observations (|O𝑖 | = 3). The figure

shows agent 1 updating a single estimated belief for agent 2. In

fig. 2a, where agent 1 only knows its own action (𝑎1
1
), all 12 possible

beliefs must be checked. After pruning based on alignment with the

received message, only
ˆ𝑏
1,2
𝑡5

and
ˆ𝑏
1,2
𝑡10

remain. Figure 2b demonstrates

that if the joint action at the last time stepwere known, only 3 beliefs

would need to be checked, and after pruning, only a single belief

(
ˆ𝑏
1,2
𝑡5

) would remain.

5.2.2 Similar Beliefs. After pruning the infeasible beliefs, we can
further reduce our set by removing beliefs that are sufficiently close

to other beliefs in the set. Zhang et al. [43] showed that for any two

beliefs 𝑏 and 𝑏′, if | |𝑏 − 𝑏′ | |1 ≤ 𝛿 , then |𝑃 (𝑜 | 𝑏, 𝑎) − 𝑃 (𝑜 | 𝑏′, 𝑎) | ≤
𝛿 . Additionally, Hsu et al. [25] proved that the value function of

POMDPs satisfies the Lipshitz condition, i.e., |𝑉 (𝑏) − 𝑉 (𝑏′) | ≤

ˆ𝑏
1,2
𝑡−1

(𝑎1
1
, 𝑎2

2
, 𝑎3

2
)

ˆ𝑏
1,2
𝑡
12

𝑜2
3

ˆ𝑏
1,2
𝑡
11

𝑜2
2

𝜋1,2 (𝑏2𝑡
10

) = 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
11

) ≠ 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
12

) ≠ 𝝈2,1
𝑡

ˆ𝑏
1,2
𝑡
10

𝑜2
1

(𝑎1
1
, 𝑎2

2
, 𝑎3

1
)

ˆ𝑏
1,2
𝑡
9

𝑜2
3

ˆ𝑏
1,2
𝑡
8

𝑜2
2

𝜋1,2 (𝑏2𝑡
7

) ≠ 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
8

) ≠ 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
9

) ≠ 𝝈2,1
𝑡

ˆ𝑏
1,2
𝑡
7

𝑜2
1

(𝑎1
1
, 𝑎2

1
, 𝑎3

2
)

ˆ𝑏
1,2
𝑡
6

𝑜2
3

ˆ𝑏
1,2
𝑡
5

𝑜2
2

𝜋1,2 (𝑏2𝑡
4

) ≠ 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
5

) = 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
6

) ≠ 𝝈2,1
𝑡

ˆ𝑏
1,2
𝑡
4

𝑜2
1

(𝑎1
1
, 𝑎2

1
, 𝑎3

1
)

ˆ𝑏
1,2
𝑡
3

𝑜2
3

ˆ𝑏
1,2
𝑡
2

𝑜2
2

𝜋1,2 (𝑏2𝑡
1

) ≠ 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
2

) ≠ 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
3

) ≠ 𝝈2,1
𝑡

ˆ𝑏
1,2
𝑡
1

𝑜2
1

(a) Pruning all reachable beliefs by removing beliefs that don’t
align with the received message 𝝈2,1

𝑡 .

ˆ𝑏
1,2
𝑡−1

(𝑎1
1
, 𝑎2

2
, 𝑎3

2
)

ˆ𝑏
1,2
𝑡
12

𝑜2
3

ˆ𝑏
1,2
𝑡
11

𝑜2
2

ˆ𝑏
1,2
𝑡
10

𝑜2
1

(𝑎1
1
, 𝑎2

2
, 𝑎3

1
)

ˆ𝑏
1,2
𝑡
9

𝑜2
3

ˆ𝑏
1,2
𝑡
8

𝑜2
2

ˆ𝑏
1,2
𝑡
7

𝑜2
1

(𝑎1
1
, 𝑎2

1
, 𝑎3

2
)

ˆ𝑏
1,2
𝑡
6

𝑜2
3

ˆ𝑏
1,2
𝑡
5

𝑜2
2

𝜋1,2 (𝑏2𝑡
4

) ≠ 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
5

) = 𝝈2,1
𝑡

𝜋1,2 (𝑏2𝑡
6

) ≠ 𝝈2,1
𝑡

ˆ𝑏
1,2
𝑡
4

𝑜2
1

(𝑎1
1
, 𝑎2

1
, 𝑎3

1
)

ˆ𝑏
1,2
𝑡
3

𝑜2
3

ˆ𝑏
1,2
𝑡
2

𝑜2
2

ˆ𝑏
1,2
𝑡
1

𝑜2
1

(b) Example of the reduction of the reachable belief size if the
joint action was known. Of the remaining beliefs, only ˆ𝑏

1,2
𝑡5

is
equal to the receivedmessage (i.e. the received action suggestion).

Figure 2: Example of pruning reachable beliefs. This example
has 𝑛 = 3, |A𝑖 | = 2, and |O𝑖 | = 3. The process is from agent 1’s
perspective, expanding a single belief estimate for agent 2.

| |𝑅 | |∞
1−𝛿 𝛿 if | |𝑏 − 𝑏′ | |1 ≤ 𝛿 and Wu et al. [41] used this bound to

combine beliefs in their proposed POMDP algorithm. Building on

this previous work, we can further reduce the size of our reachable

belief set by removing beliefs within the same 𝛿-ball for some

parameter 𝛿ℓ .

5.3 Joint Belief Estimation
5.3.1 Combining Beliefs. After inferring beliefs of other agents,

we must combine these with the receiving agent’s own belief to

estimate a joint belief. Various methods exist for combining proba-

bility distributions [19]. One straightforward approach is to form a

mixture distribution. Agent 𝑖’s estimated joint belief
ˆ
˜𝑏𝑖 would be

ˆ
˜𝑏𝑖 = 𝑤𝑖𝑏𝑖 +

∑︁
𝑗≠𝑖

𝑤 𝑗 ˆ𝑏𝑖, 𝑗 (3)

where

∑𝑛
𝑗=1𝑤

𝑗 = 1. While intuitive, this method requires assigning

and justifying potentially unequal weights.

An alternative method is conflation [24]

ˆ
˜𝑏𝑖 (𝑠) =

𝑏𝑖 (𝑠)∏𝑗≠𝑖
ˆ𝑏𝑖, 𝑗 (𝑠)∑

𝑠′∈S 𝑏𝑖 (𝑠′)
∏

𝑗≠𝑖
ˆ𝑏𝑖, 𝑗 (𝑠′)

. (4)

Unlike many methods (e.g., weighted averages), conflation is not

idempotent (i.e., 𝑇 (𝑃, . . . , 𝑃) = 𝑃), which can be beneficial when

consolidating results from independent observations. As noted by

Hill [24], conflation does not require ad hoc weights, allows for

flexible representation of uncertainty through potential increases

or decreases in mean and variance, automatically prioritizes more

accurate beliefs by giving more weight to distributions with smaller

standard deviations, and minimizes the loss of Shannon information

when consolidating multiple distributions into a single one.

5.3.2 Infer Observation. When inferring other agents’ beliefs, we

have access to the inferred action-observation histories that would

lead to these estimated beliefs. Rather than using the beliefs directly,

we can leverage these inferred actions and observations to update

an estimated joint belief. This process would double the number

of beliefs we have to maintain in memory and double the number

of belief updates we would have to perform; however, it would

avoid any issues with combining distributions and allow for a more

thorough consideration of non-independent observations.

Using the estimates of the observations and actions, we can

update our estimated joint belief

ˆ
˜𝑏𝑖𝑡 (𝑠′) ∝ 𝑂 (ô | â, 𝑠′)

∑︁
𝑠

𝑇 (𝑠′ | 𝑠, â) ˆ˜𝑏𝑖𝑡− (𝑠) (5)

where ô = (𝑜1, . . . , 𝑜𝑖 , . . . , 𝑜𝑛), â = (𝑎1, . . . , 𝑎𝑖 , . . . , 𝑎𝑛), and ˆ
˜𝑏𝑖𝑡− is

the estimation from the previous time step.

5.3.3 Belief and Action Selection. Using the suggested joint actions
to prune the reachable beliefs and removing similar beliefs is effec-

tive in reducing the size of our estimated belief set. However, the

belief subspace dominated by the suggested action can be composed

of disjoint subsets, and pruning does not guarantee the reduction

to a single belief. These two cases are shown in figs. 1 and 2a.

To form our set of estimated joint beliefs, we combine all possi-

ble estimated beliefs of the other agents. The number of possible

estimated joint beliefs is

∏
𝑗≠𝑖 | ˆB𝑖, 𝑗 |. In practice, when the infor-

mation implied by an action results in a small belief subspace, we

often do not have many beliefs to consider. We demonstrate this

in our experiments by sharing the alpha vector index instead of

the action, thus sharing a single subspace region that is dominated

by the optimal action. However, in cases where an action does not

imply much information, the pruning is less effective, and we must

employ selection strategies.

We do not combine estimations of joint beliefs (e.g., through

centroids or weighted averages) because they may represent differ-

ent beliefs resulting from different observation sequences. Instead,

we maintain counts for each unique belief. When pruning similar

beliefs we increment the count for the retained belief. These counts

serve as weights in our selection process, indicating how many

paths led to each belief.

When selecting a single belief from multiple candidates, we

choose the one with the highest count, as it represents the most

frequently reached belief state through different paths. In the case

of ties, we use random selection to avoid bias. We then use this

selected estimated joint belief to choose an action using a policy

based on the assumption of shared observations and actions (a

centralized joint policy).

This approach of maintaining belief counts and selecting based

on weights provides a good balance between computational ef-

ficiency and decision quality in our experiments. However, the

effectiveness can vary depending on the specific characteristics

of the problem being solved. There are potential areas for future

improvements, such as implementing history-based selection for

more nuanced belief choice, developing more sophisticated action

selection strategies like regret minimization across all estimated

joint beliefs [9], and further research into optimal belief and action

selection strategies for various problem scenarios. These enhance-

ments could potentially improve performance in scenarios where

our current method is less effective, but we leave their exploration

for future work.

5.4 Multiagent Control via Action Suggestions
(MCAS) Algorithm

Our approach begins by solving 𝑛 + 1MPOMDPs. For each agent

𝑖 ∈ 1, . . . , 𝑛, we solve anMPOMDPwhere agent 𝑖 receives individual

observations (observation space O𝑖) but has control over all agents
(action spaceA1×A2×· · ·×A𝑛

). This results in policies 𝜋1, . . . , 𝜋𝑛 .

We also require a policy �̃� that assumes joint observations and uses

a joint belief, which can be generated by any suitable solver (online

or offline).

The MCAS algorithm (algorithm 1) operates from the perspec-

tive of agent 1, arbitrarily designated as the coordinating agent.

This approach builds upon leader-based coordination but differs by

integrating information from all agents. Unlike hierarchical action

selection, it does not rely on a fixed communication order, instead

treating all agents’ suggestions equally to infer a comprehensive

joint belief. The coordinating agent receives action suggestions

from others, estimates a joint belief, and suggests a final joint ac-

tion based on the centralized policy, which all agents then follow.

The CombineBeliefs function (line 20) can be implemented

using various methods such as weighted averaging or conflation

(section 5.3.1). If maintaining estimated joint beliefs from inferred

observations, the UpdateEstBeliefs function (line 31) would need

to return associated observations, and the belief combination pro-

cess would involve updates for all possible observation combina-

tions, potentially improving the accuracy of the joint belief estimate

at the cost of increased computational complexity.

Pruning based on the suggested action is effective in practice;

however, the number of reachable beliefs can still grow exponen-

tially in the worst case. The ReduceToMaxLimit function (line 7)

limits the size of the belief set to 𝐵max. Our implementation com-

putes the L1 norm between all belief pairs, sorts these distances,

and iteratively removes the lower-weighted belief of the closest

pair, adding its weight to the remaining belief, until reaching 𝐵max.

6 EXPERIMENTS
To evaluate our approach, we conducted experiments on various

Dec-POMDP benchmarks. Initial tests using a leader-based ap-

proach, where one agent controls the group based on its individual

observations, revealed that in some problems, individual obser-

vations contained sufficient information, limiting the benefit of

integrating observations from other agents. Consequently, we in-

troduced modifications to standard problems to emphasize coordi-

nation and demonstrate the value of integrating different beliefs.

Algorithm 1:Multiagent Control via Action Suggestions

Given: 𝑛 /* Number of agents */

P1, . . . , P𝑛 /* Agents’ MPOMDPs */

𝜋1, . . . , 𝜋𝑛 /* Agents’ policies */
˜P, �̃� /* Joint MPOMDP and policy */

𝛿joint, 𝛿single /* Similarity thresholds */

𝐵max /* Maximum number of estimated beliefs */

1 Initialize belief 𝑏1 for agent 1

2 Initialize surrogate belief sets (ˆB1, 𝑗 , 𝑤1, 𝑗) = { (𝑏 𝑗

0
, 1.0) } for 𝑗 = 2, . . . , 𝑛

3 while not done do
4 Receive messages 𝝈 𝑗,1

from agents 𝑗 = 2, . . . , 𝑛

5 for 𝑗 ← 2 to 𝑛 do
6 ˆB1, 𝑗 ← PruneBeliefs(𝜋 𝑗 , ˆB1, 𝑗 ,𝝈𝒋,1

)

7 ˆB1, 𝑗 ← ReduceToMaxLimit(ˆB1, 𝑗 , 𝐵max)
8

ˆ
˜𝑏 ← SelectJointBelief({ (ˆB1, 𝑗 , 𝑤1, 𝑗) }𝑛

𝑗=2
, 𝑏1, 𝛿joint)

9 ã← �̃� (ˆ˜𝑏)
10 Broadcast ã to all agents

11 Execute ã[1] and observe 𝑜1 /* Agent 1’s action */

12 𝑏1 ← update(P1, 𝑏1, ã, 𝑜1)
13 for 𝑗 ← 2 to 𝑛 do
14 ˆB1, 𝑗 , 𝑤1, 𝑗 ← UpdateEstBeliefs(𝑗, P 𝑗 , ˆB1, 𝑗 , 𝑤1, 𝑗 , ã, 𝛿single)

15 Function PruneBeliefs(𝜋, ˆB,𝝈)
16 return {𝑏 ∈ ˆB | 𝜋 (𝑏) = 𝝈 }

17 Function SelectJointBelief({ (ˆB 𝑗 , 𝑤 𝑗) }𝑛
𝑗=2

, 𝑏1, 𝛿joint)

18 Bcombined ← ∅, 𝑤combined ← ∅
19 for (ˆ𝑏2, . . . , ˆ𝑏𝑛) ∈ ˆB2 × · · · × ˆB𝑛 do
20 𝑏𝑐 ← CombineBeliefs(𝑏1, ˆ𝑏2, . . . , ˆ𝑏𝑛)
21 𝑤𝑐 ←∏𝑛

𝑗=2 𝑤
𝑗 [index(ˆ𝑏 𝑗)]

22 if ∀𝑏′ ∈ Bcombined : ∥𝑏𝑐 − 𝑏′ ∥1 ≥ 𝛿joint then
23 Bcombined ← Bcombined ∪ {𝑏𝑐 }
24 𝑤combined ← 𝑤combined ∪ {𝑤𝑐 }
25 else
26 𝑘 ← argmin𝑏′ ∈B

combined

∥𝑏𝑐 − 𝑏′ ∥1
27 𝑤combined [𝑘] ← 𝑤combined [𝑘] + 𝑤𝑐

28 𝑤normalized ← 𝑤combined/| |𝑤combined | |1
29 𝑘 ← argmax𝑖 𝑤normalized [𝑖]
30 return Bcombined [𝑘]

31 Function UpdateEstBeliefs(𝑗, P, ˆB, 𝑤, a, 𝛿single)
32 ˆBnew ← ∅, 𝑤new ← ∅
33 for 𝑖 ← 1 to | ˆB| do
34 for 𝑜 ∈ O 𝑗 do
35 𝑏′ ← update(P, ˆB[𝑖], a, 𝑜)
36 𝑤′ ← 𝑤 [𝑖] · 𝑃 (𝑜 | ˆB[𝑖], a)
37 if ∀𝑏′′ ∈ ˆBnew : ∥𝑏′ − 𝑏′′ ∥1 ≥ 𝛿single then
38 ˆBnew ← ˆBnew ∪ {𝑏′ }
39 𝑤new ← 𝑤new ∪ {𝑤′ }
40 else
41 𝑘 ← argmin

𝑏′′ ∈ ˆBnew ∥𝑏
′ − 𝑏′′ ∥1

42 𝑤new [𝑘] ← 𝑤new [𝑘] + 𝑤′
43 return ˆBnew, 𝑤new

All experiments were implemented and executed using Julia

[12] with the POMDPs.jl framework [18]. Problem implementa-

tions were based primarily on originating papers, with additional

references to the Multiagent Systems Planning Page [39] and the

Dec-POMDP page [2] to ensure consistency with previous work.

For context, we include the best-reported results from Dec-POMDP

solvers when available, noting that our approach’s use of commu-

nication makes these comparisons informative but not equivalent.

6.1 Benchmark Problems
We tested MCAS on several Dec-POMDP benchmarks: Decentral-

ized Tiger [31], Broadcast Channel [23], Meeting in a 2 × 2 Grid
[11], Meeting in a 3 × 3 Grid [4], Cooperative Box Pushing [37],

Wireless Networking [34], andMars Rover [5]. For detailed problem

descriptions and implementations, we refer readers to the original

papers and our accompanying repository.

The original problems were designed without considering com-

munication. In our experiments, we found that when we allowed

one agent, using only its individual observations, to control all

agents, it often achieved performance similar to a full MPOMDP

(with shared observations and actions). To better demonstrate the

value of integrating different beliefs, we introduced modifications

to increase difficulty and emphasize the importance of different

agent observations. For instance, in the original Meeting in 2 × 2
Grid problem, agents started with known locations and faced no

penalties for wall collisions, enabling simple but effective policies

like always moving towards a corner.

We use qualifiers to denote problem modifications from the

original implementation in our results:

• UI : Changed the initial belief to a uniform distribution.

• WP : Added penalties to make action selection more con-

sequential (e.g., penalties for wall collisions or message

sending).

• DP : Modified Broadcast problem probabilities for a three-

agent scenario (buffer fill probabilities of 0.2, 0.4, 0.4 for

agents one, two, and three, respectively).

• SS: For Meet 2 × 2, changed starting positions from corners

to same row or column.

• AG: In Meet 3 × 3, rewarded agents for meeting at any grid

location, not just two corners.

• SO: Introduced stochastic observations in Box Push (50%

chance of correct observation, 50 % of no observation).

• 5G: Added an additional sampling site to Mars Rover, ac-

cessible from the original top-right location.

• Meet 19: Expanded version of Meet 2 × 2 with 27 grid loca-

tions (|S|𝑛 with 𝑛 agents). Observation space expanded to

include no walls and both walls in addition to the original

left and right wall observations.

6.2 Baseline Methods and Implementation
Details

We compared MCAS against the following baselines:

• MMDP : Multiagent MDP assuming full observability.

• MPOMDP : Multiagent POMDP with centralized control.

• MPOMDP-C: MPOMDP policy with beliefs generated by

conflating the true individual agent beliefs.

• MCAS−𝛼 : MCAS using alpha vector indices instead of ac-

tions, providing more refined subspaces for pruning. Used

conflation with similarity parameters 𝛿
single

and 𝛿joint set

to 10
−5
.

• MCAS: As described in section 5.4, using same parameters

as MCAS−𝛼 with maximum estimated beliefs 𝐵max = 200.

• MPOMDP-I : Single agent controls all, using only its indi-

vidual observations.

Table 1: Average cumulative discounted reward (with 95% confidence intervals) for various Dec-POMDP problems.

Problem Qualifiers # Agents

Solution Method

MMDP MPOMDP MPOMDP-C MCAS−𝛼 MCAS MPOMDP-I Dec-POMDP Independent

Dec-Tiger

— 2 200.0 59.5 ± 0.9 59.5 ± 0.9 58.5 ± 0.9 58.5 ± 0.8 34.3 ± 1.7 13.5 [35] −68.1 ± 3.5
— 3 300.0 108.5 ± 1.0 108.5 ± 1.0 108.5 ± 1.0 108.5 ± 1.0 82.1 ± 1.5 — −95.5 ± 4.1
— 4 400.0 153.0 ± 0.7 153.0 ± 0.7 152.8 ± 0.7 152.8 ± 0.7 121.3 ± 1.5 — −121.4 ± 4.4

Broadcast

— 2 9.4 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.3 [29] 7.6 ± 0.1
DP, WP 3 6.7 6.6 ± 0.0 6.6 ± 0.0 6.6 ± 0.0 6.6 ± 0.0 5.5 ± 0.0 — −0.6 ± 0.1

Meet 2 × 2 — 2 8.0 6.4 ± 0.1 6.1 ± 0.2 6.1 ± 0.2 6.1 ± 0.2 5.9 ± 0.1 6.1 [3]* 1.7 ± 0.1
SS 2 8.4 6.9 ± 0.1 6.8 ± 0.1 6.8 ± 0.1 6.8 ± 0.1 6.8 ± 0.1 7.0 [29]* 2.3 ± 0.1

UI, WP 2 8.7 5.8 ± 0.2 5.3 ± 0.2 5.3 ± 0.2 5.3 ± 0.2 4.5 ± 0.2 — 3.5 ± 0.2

Meet 3 × 3
— 2 5.9 5.8 ± 0.1 5.8 ± 0.1 5.8 ± 0.1 5.7 ± 0.1 3.6 ± 0.1 5.8 [16] 3.7 ± 0.1

AG, UI, WP 2 8.1 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 7.1 ± 0.1 3.5 ± 0.1 — 2.8 ± 0.1
AG, UI, WP 3 7.2 6.4 ± 0.1 6.4 ± 0.1 6.4 ± 0.1 6.2 ± 0.1 1.0 ± 0.1 — 1.7 ± 0.1

Meet 19 UI, WP 2 6.3 2.2 ± 0.1 2.1 ± 0.1 2.0 ± 0.1 1.6 ± 0.1 0.6 ± 0.1 — 0.6 ± 0.1

Box Push

— 2 240.1 222.9 ± 2.2 223.4 ± 2.1 223.4 ± 2.1 223.0 ± 2.2 199.6 ± 2.6 224.4 [16] 163.6 ± 3.4
SO 2 240.1 204.3 ± 2.5 203.4 ± 2.5 203.2 ± 2.5 199.8 ± 2.5 178.8 ± 2.7 — 138.5 ± 3.8

Wireless

— 2 −143.6 −152.8 ± 2.3 −152.8 ± 2.3 −152.8 ± 2.3 −153.0 ± 2.4 −152.8 ± 2.3 −167.1 [29]† −219.8 ± 3.9
WP 2 −154.5 −165.8 ± 2.4 −166.5 ± 2.4 −166.5 ± 2.4 −166.5 ± 2.4 −172.4 ± 2.3 — −240.2 ± 4.1

Mars Rover

— 2 29.2 29.0 ± 0.1 29.0 ± 0.1 29.0 ± 0.1 29.0 ± 0.1 24.4 ± 0.3 26.9 [16] 26.0 ± 0.2
UI 2 24.9 23.9 ± 0.1 23.9 ± 0.1 23.9 ± 0.1 19.8 ± 0.2 16.4 ± 0.2 — 15.3 ± 0.2
UI 3 26.2 25.2 ± 0.1 25.2 ± 0.1 25.2 ± 0.1 23.8 ± 0.2 19.7 ± 0.1 — 16.6 ± 0.1

5G, UI 2 21.4 20.7 ± 0.1 20.7 ± 0.1 20.7 ± 0.8 18.0 ± 0.2 14.8 ± 0.1 — 13.1 ± 0.2
*
The papers reporting the best scores for Meeting 2 × 2 do not discuss the initial state. We associated the best-reported result with an initial condition based on the MPOMDP solutions (which is an

upper bound on Dec-POMDP results). Other reported scores: [35]: 6.9, [5]: 5.6.
†
Dibangoye et al. [16] reported a value of −140.4, but we were unable to verify the implementations details. The reported value −140.4 is better than the performance of the MPOMDP on our

implementation which implies there is a difference in implementation. Previously highest reported score prior to MacDermed and Isbell [29] was −175.4 by Pajarinen and Peltonen [35].

• Independent: Agents execute individual policies (assuming

control of other agents), ignoring messages.

• Dec-POMDP : Best reported results from literature (experi-

ments not conducted by us).

All POMDP policies were computed using SARSOP [28]. Experi-

ments for POMDP-based methods were conducted on a MacBook

Prowith an AppleM1Max processor and 32GB ofmemory, running

each scenario 2000 times. Results for these methods are reported

with 95% confidence intervals. MMDP results represent the con-

verged policy value and are reported without confidence intervals.

Most problems used 50 time steps with a discount factor of 0.9,

while the Wireless Network problem used 450 steps and a 0.99

discount factor.

6.3 Results
The results presented in table 1 offer several interesting insights into

the performance of our proposed MCAS algorithm across various

Dec-POMDP benchmarks. One notable observation is the consis-

tent performance of MPOMDP-C compared to MPOMDP across all

problems. This suggests that using conflation to combine beliefs is

an effective approach, particularly in these scenarios where obser-

vations are independent. The similarity in performance indicates

that conflation successfully integrates information from multiple

agents without significant loss of decision-making quality.

MCAS−𝛼 consistentlymatches or closely approximatesMPOMDP-

C results, implying accurate belief estimates and effective use of

the refined subspace information provided by alpha vector indices.

MCAS (using actions) performs marginally worse than MCAS−𝛼
and MPOMDP-C, but still achieves comparable results despite hav-

ing a less refined belief subspace for pruning. This performance

indicates that MCAS can maintain an effective joint belief estimate

with a belief subspace defined only by shared actions.

MCAS effectively pruned beliefs, keeping | ˆB1, 𝑗 | relatively low.

The maximum set size limit (𝐵max) was reached in only two prob-

lems: 3.2 % of Meet 19 and 87.8 % of Box Push-SO runs. The largest

performance decreases for MCAS compared to MCAS−𝛼 occurred

in Meet 19, Box Push-SO, Mars Rover-UI, and Mars Rover-5G-UI.

This difference is due to MCAS−𝛼 ’s more effective pruning. Table 2

shows the maximum estimated belief set sizes for problems with

a noticeable increase for MCAS. Despite larger set sizes, MCAS

still achieved high performance approaching that of MCAS−𝛼 . We

anticipate this gap will decrease with improved belief selection. The

average and maximum set sizes for all problems are provided in

table 3.

An interesting pattern emerges when comparing MPOMDP and

MPOMDP-I results. In problems like Broadcast, Meeting, and Wire-

less, these approaches yield similar performance, suggesting limited

benefit in maintaining estimates of other agents’ beliefs. In such

scenarios, even sharing observations provides no advantage over

Table 2: Maximum size of ˆB1, 𝑗 per simulation.

Problem Qualifiers # Agents

Solution Method

MCAS−𝛼 MCAS

Meet 3 × 3 — 2 1.0 ± 0.0 2.5 ± 0.0
Meet 19 UI, WP 2 1.5 ± 0.0 16.8 ± 1.6
Box Push SO 2 4.8 ± 0.1 192.1 ± 1.2
Wireless — 2 1.0 ± 0.0 18.0 ± 0.9

Mars Rover

UI 2 1.0 ± 0.0 2.0 ± 0.0
5G, UI 2 1.0 ± 0.0 3.0 ± 0.0

beliefs using only individual observations. This insight could be

valuable for simplifying processes in certain types of multiagent

problems, though determining which agent should take the lead in

such cases would require further consideration.

A challenge in conducting these experiments was the genera-

tion of MPOMDP policies. While this process is substantially more

tractable compared to Dec-POMDP solvers, the complexity of solv-

ing MPOMDPs still grows exponentially with the number of agents.

The online execution of MCAS, on the other hand, did not pose a

major computational burden. All simulations were conducted on

a standard laptop, demonstrating the algorithm’s efficiency. This

balance between the offline computational load of policy generation

and the lightweight online execution makes MCAS a promising

approach for more practical multiagent problems.

7 CONCLUSIONS AND FUTUREWORK
This paper introduced the Multiagent Control via Action Sugges-

tions (MCAS) algorithm, a new approach to coordinating multiple

agents in partially observable environments. By leveraging sug-

gested actions as a form of communication, MCAS demonstrated

performance comparable to centralized methods across various

Dec-POMDP benchmarks, while maintaining computational effi-

ciency. The algorithm effectively prunes the reachable belief space

enabling accurate belief inference of other agents which allows for

the estimation of a joint belief and improved decision making.

Though the results of MCAS are promising, there are many

opportunities for future research. A key area is a deeper theoreti-

cal analysis of MCAS. This analysis includes studying the conver-

gence properties of the belief estimation process, establishing per-

formance bounds relative to centralized methods, and investigating

the information-theoretic properties of action-based communica-

tion in multiagent settings. Another important area is relaxing the

strong assumptions made in this work. For example, investigating

scenarios where agents lack access to others’ exact policies could

reveal how similar surrogate policies need to be to maintain per-

formance. Exploring cases where agents do not always follow the

coordinator’s suggestions would enhance robustness. Extending

the ideas of MCAS to online solvers like AdaOPS [41] and BetaZero

[30] is also an important area of research for solving larger, more

complex problems. This integration would require developing effi-

cient methods to estimate belief subspaces in real-time and handle

the stochastic nature of online policies in belief inference.

Our results indicate that action-based communication can be

a powerful tool for multiagent coordination, potentially bridging

the gap between decentralized and centralized approaches. As we

continue to refine and extend these methods, we move closer to

realizing the full potential of collaborative decision making in com-

plex, partially observable environments. Importantly, this approach

lays the groundwork for more intuitive coordination in human-

agent teams, opening up exciting possibilities for mixed-initiative

planning and decision making in real-world applications.

REFERENCES
[1] Stefano V. Albrecht and Peter Stone. 2018. Autonomous agents modelling other

agents: A comprehensive survey and open problems. Artificial Intelligence 258

(2018), 66–95. https://doi.org/10.1016/j.artint.2018.01.002

[2] Christopher Amato. n.d.. Decentralized POMDPs. http://rbr.cs.umass.edu/

camato/decpomdp/.

[3] Christopher Amato, Blai Bonet, and Shlomo Zilberstein. 2010. Finite-State Con-

trollers Based on Mealy Machines for Centralized and Decentralized POMDPs.

In AAAI Conference on Artificial Intelligence (AAAI).

[4] Chistopher Amato, Jilles Steeve Dibangoye, and Shlomo Zilberstein. 2009. In-

cremental Policy Generation for Finite-Horizon Dec-POMDPs. In International

Conference on Planning and Scheduling (ICAPS).

[5] Christopher Amato and Shlomo Zilberstein. 2009. Achieving Goals in Decentral-

ized POMDPs. In International Conference on Autonomous Agents and Multiagent

Systems (AAMAS).

[6] Dylan M. Asmar. 2003. Airborne Collision Avoidance in Mixed Equipage Environ-

ments. Master’s thesis. Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics.

[7] Dylan M. Asmar and Mykel J. Kochenderfer. 2013. Optimized Airborne Collision

Avoidance in Mixed Equipage Environments. Project Report ATC-408. MIT Lincoln

Laboratory, Lexington, MA.

[8] DylanM. Asmar andMykel J. Kochenderfer. 2022. Collaborative DecisionMaking

Using Action Suggestions. In Advances in Neural Information Processing Systems

(NeurIPS).

[9] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis

of the Multiarmed Bandit Problem. Machine Learning 47, 2 (2002), 235–256.

https://doi.org/10.1023/A:1013689704352

[10] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.

2002. The Complexity of Decentralized Control of Markov Decision Processes.

Mathematics of Operations Research 27, 4 (2002), 819–840.

[11] Daniel S. Bernstein, Eric A. Hansen, and Shlomo Zilberstein. 2005. Bounded

Policy Iteration for Decentralized POMDPs. In International Joint Conference on

Artificial Intelligence (IJCAI).

[12] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia:

A fresh approach to numerical computing. SIAM review 59, 1 (2017), 65–98.

https://doi.org/10.1137/141000671

[13] Jacob W. Crandall, Mayada Oudah, Tennom, Fatimah Ishowo-Oloko, Sherief

Abdallah, Jean-François Bonnefon, Manuel Cebrian, Azim Shariff, Michael A.

Goodrich, and Iyad Rahwan. 2018. Cooperating with machines. Nature Commu-

nications 9, 1 (2018), 233. https://doi.org/10.1038/s41467-017-02597-8

[14] Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R. Mc-

Kee, Joel Z. Leibo, Kate Larson, and Thore Graepel. 2020. Open Problems in

Cooperative AI. arXiv:2012.08630

[15] Jilles S. Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet.

2016. Optimally solving Dec-POMDPs as continuous-state MDPs. Journal of

Artificial Intelligence Research 55, 1 (2016), 443–497. https://doi.org/10.1613/jair.

4623

[16] Jilles S. Dibangoye, Olivier Buffet, and François Charpillet. 2014. Error-Bounded

Approximations for Infinite-Horizon Discounted Decentralized POMDPs. In

Machine Learning and Knowledge Discovery in Databases.

[17] Jilles S. Dibangoye, Guy Shani, Brahim Chaib-draa, and Abdel Illah Mouaddib.

2009. Topological order planner for POMDPs. In International Joint Conference

on Artificial Intelligence (IJCAI).

[18] Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K.

Gupta, and Mykel J. Kochenderfer. 2017. POMDPs.jl: A Framework for Sequential

Decision Making under Uncertainty. Journal of Machine Learning Research 18,

26 (2017), 1–5.

[19] Christian Genest and James V. Zidek. 1986. Combining Probability Distributions:

A Critique and an Annotated Bibliography. Statist. Sci. 1, 1 (1986), 114 – 135.

https://doi.org/10.1214/ss/1177013825

[20] Claudia V. Goldman and Shlomo Zilberstein. 2003. Optimizing information

exchange in cooperative multi-agent systems. In International Conference on

Autonomous Agents and Multiagent Systems (AAMAS). https://doi.org/10.1145/

860575.860598

https://doi.org/10.1016/j.artint.2018.01.002
http://rbr.cs.umass.edu/camato/decpomdp/
http://rbr.cs.umass.edu/camato/decpomdp/
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1137/141000671
https://doi.org/10.1038/s41467-017-02597-8
https://arxiv.org/abs/2012.08630
https://doi.org/10.1613/jair.4623
https://doi.org/10.1613/jair.4623
https://doi.org/10.1214/ss/1177013825
https://doi.org/10.1145/860575.860598
https://doi.org/10.1145/860575.860598

[21] Claudia V. Goldman and Shlomo Zilberstein. 2004. Decentralized control of

cooperative systems: categorization and complexity analysis. Journal of Artificial

Intelligence Research 22, 1 (2004), 143–174. https://doi.org/10.1613/jair.1427

[22] Barbara J. Grosz and Sarit Kraus. 1996. Collaborative plans for complex group

action. Artificial Intelligence 86, 2 (1996), 269–357. https://doi.org/10.1016/0004-

3702(95)00103-4

[23] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. 2004. Dynamic

Programming for Partially Observable Stochastic Games. In AAAI Conference on

Artificial Intelligence (AAAI).

[24] Theodore Hill. 2011. Conflations of probability distributions. Trans. Amer. Math.

Soc. 363, 6 (2011), 3351–3372.

[25] David Hsu, Wee Sun Lee, and Nan Rong. 2007. What makes some POMDP

problems easy to approximate?. In Advances in Neural Information Processing

Systems (NeurIPS).

[26] Matthew Johnson and Alonso Vera. 2019. No AI Is an Island: The Case for

Teaming Intelligence. AI Magazine 40, 1 (2019), 16–28. https://doi.org/10.1609/

aimag.v40i1.2842

[27] Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. 2022. Algorithms for

Decision Making. MIT Press, Cambridge, MA.

[28] Hanna Kurniawati, David Hsu, and Wee Sun Lee. 2008. SARSOP: Efficient Point-

Based POMDP Planning by Approximating Optimally Reachable Belief Spaces.

In Robotics: Science and Systems (RSS). https://doi.org/10.7551/mitpress/8344.001.

0001

[29] Liam C. MacDermed and Charles L. Isbell. 2013. Point Based Value Iteration with

Optimal Belief Compression for Dec-POMDPs. In Advances in Neural Information

Processing Systems (NeurIPS).

[30] Robert J. Moss, Anthony Corso, Jef Caers, and Mykel J. Kochenderfer. 2024.

BetaZero: Belief-State Planning for Long-Horizon POMDPs using Learned Ap-

proximations. In Reinforcement Learning Conference (RLC).

[31] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy Marsella.

2003. Taming Decentralized POMDPs: Towards Efficient Policy Computation

for Multiagent Settings. In International Joint Conference on Artificial Intelligence

(IJCAI).

[32] Frans A. Oliehoek. 2013. Sufficient Plan-Time Statistics for Decentralized

POMDPs. In International Joint Conference on Artificial Intelligence (IJCAI).

[33] Frans A. Oliehoek and Christopher Amato. 2016. A Concise Introduction to

Decentralized POMDPs. Springer International Publishing, Cham, CH. https:

//doi.org/10.1007/978-3-319-28929-8

[34] Joni Pajarinen and Jaakko Peltonen. 2011. Efficient Planning for Factored Infinite-

Horizon Dec-POMDPs. In International Joint Conference on Artificial Intelligence

(IJCAI).

[35] Joni Pajarinen and Jaakko Peltonen. 2011. Periodic Finite State Controllers for

Efficient POMDP and Dec-POMDP Planning. In Advances in Neural Information

Processing Systems (NeurIPS).

[36] David V. Pynadath and Milind Tambe. 2002. The Communicative Multiagent

Team Decision Problem: Analyzing Teamwork Theories and Models. Journal of

Artificial Intelligence Research 16 (2002), 389–423. https://doi.org/10.1613/jair.

1024

[37] Sven Seuken and Shlomo Zilberstein. 2007. Improved Memory-Bounded Dy-

namic Programming for Decentralized POMDPs. In Conference on Uncertainty in

Artificial Intelligence (UAI).

[38] Richard D. Smallwood and Edward J. Sondik. 1973. The Optimal Control of

Partially ObservableMarkov Processes over a Finite Horizon. Operations Research

21 (1973), 1071–1088.

[39] Matthijs Spaan, Chris Amato, Frans Oliehoek, and Stefan Witwicki. 2014. Multi-

Agent Systems Planning. http://masplan.org/.

[40] Aaquib Tabrez, Matthew B. Luebbers, and Bradley Hayes. 2020. A Survey of

Mental Modeling Techniques in Human–Robot Teaming. Current Robotics Reports

1, 4 (2020), 259–267. https://doi.org/10.1007/s43154-020-00019-0

[41] Chenyang Wu, Guoyu Yang, Zongzhang Zhang, Yang Yu, Dong Li, Wulong Liu,

and Jianye HAO. 2021. Adaptive Online Packing-guided Search for POMDPs. In

Advances in Neural Information Processing Systems (NeurIPS).

[42] Yuxuan Xie, Jilles S. Dibangoye, and Olivier Buffet. 2020. Optimally Solving

Two-Agent Decentralized POMDPs Under One-Sided Information Sharing. In

International Conference on Machine Learning (ICML).

[43] Zongzhang Zhang, Michael Littman, and Xiaoping Chen. 2012. Covering Number

as a Complexity Measure for POMDP planning and learning. In AAAI Conference

on Artificial Intelligence (AAAI).

https://doi.org/10.1613/jair.1427
https://doi.org/10.1016/0004-3702(95)00103-4
https://doi.org/10.1016/0004-3702(95)00103-4
https://doi.org/10.1609/aimag.v40i1.2842
https://doi.org/10.1609/aimag.v40i1.2842
https://doi.org/10.7551/mitpress/8344.001.0001
https://doi.org/10.7551/mitpress/8344.001.0001
https://doi.org/10.1007/978-3-319-28929-8
https://doi.org/10.1007/978-3-319-28929-8
https://doi.org/10.1613/jair.1024
https://doi.org/10.1613/jair.1024
http://masplan.org/
https://doi.org/10.1007/s43154-020-00019-0

A ADDITIONAL RESULTS

Table 3: Average and Maximum size of ˆB1, 𝑗 per simulation (all problems).

Problem Qualifiers # Agents

Average | ˆB1, 𝑗 | Max | ˆB1, 𝑗 |

MCAS−𝛼 MCAS MCAS−𝛼 MCAS

Dec-Tiger

— 2 1.0 ± 0.0 1.0 ± 0.0 1.6 ± 0.0 1.6 ± 0.0
— 3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
— 4 1.0 ± 0.0 1.0 ± 0.0 1.1 ± 0.0 1.1 ± 0.0

Broadcast

— 2 1.0 ± 0.0 1.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
DP, WP 3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Meet 2 × 2
— 2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
SS 2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

UI, WP 2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Meet 3 × 3
— 2 1.0 ± 0.0 1.1 ± 0.0 1.0 ± 0.0 2.5 ± 0.0

AG, UI, WP 2 1.0 ± 0.0 1.1 ± 0.0 1.0 ± 0.0 1.2 ± 0.0
AG, UI, WP 3 1.0 ± 0.0 1.1 ± 0.0 1.0 ± 0.0 1.3 ± 0.0

Meet 19 UI, WP 2 1.0 ± 0.0 4.9 ± 0.5 1.5 ± 0.0 16.8 ± 1.6

Box Push

— 2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.5 ± 0.0
SO 2 1.8 ± 0.0 78.0 ± 1.6 4.8 ± 0.1 192.1 ± 1.2

Wireless

— 2 1.0 ± 0.0 3.5 ± 0.1 1.0 ± 0.0 18.0 ± 0.9
WP 2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Mars Rover

— 2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
UI 2 1.0 ± 0.0 1.2 ± 0.0 1.0 ± 0.0 2.0 ± 0.0
UI 3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.1 ± 0.0

5G, UI 2 1.0 ± 0.0 1.2 ± 0.0 1.0 ± 0.0 3.0 ± 0.0

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Problem Formulation and Notation
	5 Using Action Suggestions
	5.1 Inferring the Belief Subspace
	5.2 Inferring the Belief
	5.3 Joint Belief Estimation
	5.4 Multiagent Control via Action Suggestions (MCAS) Algorithm

	6 Experiments
	6.1 Benchmark Problems
	6.2 Baseline Methods and Implementation Details
	6.3 Results

	7 Conclusions and Future Work
	References
	A Additional Results

